skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiel, Hillel_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bio-inspired robot controllers are becoming more complex as we strive to make them more robust to, and flexible in, noisy, real-world environments. A stable heteroclinic network (SHN) is a dynamical system that produces cyclical state transitions using noisy input. SHN-based robot controllers enable sensory input to be integrated at the phase-space level of the controller, thus simplifying sensor-integrated, robot control methods. In this work, we investigate the mechanism that drives branching state trajectories in SHNs. We liken the branching state trajectories to decision-splits imposed into the system, which opens the door for more sophisticated controls -- all driven by sensory input. This work provides guidelines to systematically define an SHN topology, and increase the rate at which desired decision states in the topology are chosen. Ultimately, we are able to control the rate at which desired decision states activate for input signal-to-noise ratios across six orders of magnitude. 
    more » « less